IDS, IGS, ILRS, IVS & COL standards to get ready for the GRGS contribution to ITRF2013 | Gravitational
Dynamic | DORIS | GNSS | SLR | VLBI | COL | |---------------------------|--|---|---|-----------|---| | Geopotential | EIGEN-6S2 up to
degree 95 including
time variable terms up
to degree 50 (bias &
drift per yr from 2002
to 2012, periodic
18.6, 1, 0.5 yrs) | EIGEN-6S2 up to
degree 12 | EIGEN-6S2 up to
degree 30 (for
LAGEOS) | | Static gravity field model is based on EIGEN-GRGS.RL02, tide-free, complete to degree and order 2 up to 160 ftp://hpiers.obspm.fr/iers/eop/grgs/Models/Gravity_Field/ | | Third-body | JPL DE421 | JPL DE421 | JPL DE421 | JPL DE421 | JPL DE405 | | Solid Earth Tides | IERS 2010 standards | IERS 2010 standards | IERS 2010 standards | | IERS 2010 standards | | Ocean Tides | FES 2012 (32
principal waves, + 60
admittance waves) up
to degree 50 | FES 2012 (32
principal waves, + 60
admittance waves) up
to degree 12 | FES 2012 (32
principal waves, + 60
admittance waves) up
to degree 20 | | FES 2004
ftp://hpiers.obspm.fr/ie
rs/eop/grgs/Models/O
cean Tide Loading/ | | Atmospheric gravity | 3hr ERA-interim /
ECMWF up to degree
50 | 3hr ERA-interim /
ECMWF up to degree
12 | 3hr ERA-interim /
ECMWF up to degree
20 | | none (integrated into the geopotential) | | Non tidal oceanic gravity | TUGO R12 up to degree 50 | TUGO R12 up to degree 12 | TUGO R12 up to degree 20 | | none (integrated into the geopotential) | | Atmospheric tides | none
(considered through
the ECMWF
atmospheric data) | none | none | | Ray & Ponte 2003 ftp://hpiers.obspm.fr/ie rs/eop/grgs/Models/At mospheric_Tide/ | | Earth pole tide | IERS2010 standards | IERS2010 standards | IERS2010 standards | | IERS2010 standards | | Ocean Pole Tide | Desai 2002 up to degree 12 | Desai 2002 up to degree 12 | Desai 2002 up to degree 12 | | Desai 2002 up to degree 12 | | Non Gravitational
Dynamic | DORIS | GNSS | SLR | VLBI | COL | |------------------------------|--|--|--|------------------------|--| | Atmospheric drag | DTM2012 (with Am indices) Spots, Envisat, Cryosat2, HY-2A: one coef/4 hrs (one/1hr in high solar activity periods); Topex, Jasons: one coef/half day | | DTM2012
None for Lageos | | JB2008 | | Solar radiation pressure | one coef/day strongly
constrained (1.e-4) to:
0.98 for Topex;
1.15 for Spot-2;
1.16 for Spot-3/-4;
1.17 for Spot-5;
1.29 for Envisat;
0.97 for Jason-2;
0.85 for Cryosat-2;
1.13? for HY-2A | one coefficient
adjusted per day? | one scale coefficient adjusted per arc | | applied | | Albedo + infra-red | interpolated from grids issued from ECMWF 6hr 4.5° grids | interpolated from grids
issued from ECMWF
6hr 9°grids | interpolated from grids issued from ECMWF 6hr 9° grids | | applied | | Satellite emissivity | none | none | none | | none | | Relativity | Schwarzschild model
+ Lense-Thirring +
geodetic precession | Schwarzschild model
+ Lense-Thirring +
geodetic precession | Schwarzschild model
+ Lense-Thirring +
geodetic precession | IERS 2010
standards | Schwarzschild model
+ Lense-Thirring +
geodetic precession | | Hill/empirical | once/rev along-& cross-track per x day | | once/rev along-& cross-track per x day | | | | Geometry | DORIS | GNSS | SLR/LLR | VLBI | COL | |--------------------------------|----------------------------|--|----------------------------|----------------------------|---| | Earth reference system | DPOD2008 | Set of 50-60 station
coordinates &
velocities from
ITRF2008 & IGb08 | ITRF2008
(SLRF2008) | VTRF2008 | ITRF 2008 | | Celestial reference system | inertial J2000 | inertial J2000 | inertial J2000 | J2000, ICRF2 | J2000, ICRF2 | | Pole & UT1 | daily EOPC04_i08 | daily EOPC04_i08 | daily EOPC04_i08 | daily EOPC04_i08 | EOPC04 initial values interpolated (Lagrange polynomial method) with 3hr time intervals | | Precession / Nutation | IERS 2010 using NRO origin | IERS 2010 using NRO origin (+ nutation rates) | IERS 2010 using NRO origin | IERS 2010 using NRO origin | IAU2000A - IAU2006
a-priori set to zero | | Solid Earth tidal displacement | IERS 2010 standards | IERS 2010 standards | IERS 2010
standards | IERS 2010
standards | IERS 2010 standards | | Ocean loading | FES2012 | FES2012 | FES2012 | FES2012 | Ocean tide loading models per stations are obtained from Scherneck's ocean loading site and provided in the BLQ format according to the IERS Standards 2010 | | Tidal atmospheric loading | S1/S2 Ray & Ponte (2003) | none | | Non tidal atmospheric loading | none | none | none | none | none | | Solid pole tide displacement | IERS 2010 standards | IERS 2010 standards | IERS 2010
standards | IERS 2010
standards | IERS 2010 standards | | Ocean pole tide displacement | none | none | none | none | none | | Propagation &
Systems | DORIS | GNSS | SLR/LLR | VLBI | COL | |--------------------------|--|--|--|---|---| | Troposphere | GPT/GMF modelling
from Boehm et al.
(2006). One zenith
delay/pass + one daily
tropospheric gradient
per station in North &
East directions | GPT/GMF modelling
from Boehm et al.
(2006). One zenith
delay/2hr in PWL
mode + one daily
tropospheric gradient
per station in North &
East directions | Mendes-Pavlis:
(zenith delay &
mapping Function) | GPT/GMF modelling
from Boehm et al.
(2006). One zenith
delay/2hr + one daily
tropospheric gradient
per station in North &
East directions | GPT/GMF for radio-
electrical waves and
Mendes-Pavlis for SLR.
One zenith delay/2hr or
pass + one daily
tropospheric gradient
per station in North &
East directions | | Ionosphere | 2 nd order corrections
using IGS TEC values
and igrf2011 magnetic
field model | 2 nd order corrections
using IGS TEC values
and igrf2011 magnetic
field model | | | none | | Satellite system | Centre of mass / Phase centre vector from macro model + attitude law No phase law applied | Centre of mass offsets / Phase centre corrections from file: igs08_wwww.atx | Centre of mass corrections from G. Appleby | | | | Ground system | Phase centre /
reference point vector
from manufacturer
values
Phase law applied | Absolute elevation/azimuth dependent phase centre corrections are applied according to igs08_www.atx | | Antenna thermal
expansion:
Nothnagel (2008)
Antenna axes offset:
IVS files | | | Elevation cut-off | 12 degrees Down weighting law for elevation <= 20°, Weight of the observation is multiplied by the factor elevation**2/400 with elevation in degrees) | 10 degrees | 10 degrees | 12 degrees | |